Research on the Optimization of the Heating Effect of Lithium-Ion Batteries at a Low Temperature Based on an Electromagnetic Induction Heating System

Author:

Wang Borui1,Yan Mingyin1

Affiliation:

1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110178, China

Abstract

Based on an electromagnetic induction heating system that was recently developed in a previous work, an orthogonal test with three elements and nine levels was carried out to improve the heating effect of the system. This was intended to achieve a balance between the heating rate and temperature uniformity, where the electrochemical and thermal behaviors of the heated lithium-ion battery could be characterized by a high-accuracy electrochemical–thermal coupling model. This was validated against constant-current discharge and HPPC test data at room temperature and different low temperatures. Under the optimal parameter combination that was found in the orthogonal test, the battery temperature could rise to 293.15 K from 243.15 K in 494 s, with a maximum temperature rise rate of 0.133 K·s−1. The temperature difference after heating reached 4.21 K, which resulted from the heat conductivity of the battery material due to the skin depth of the battery shell and the material properties inside the battery. Due to the internal resistance, which decreased to no more than a quarter of the low-temperature level, both the usable energy and pulse power were increased more than 2.5 and 3 times, respectively. The enhancement of the energy output ability could provide a greater cruise range and improved dynamics for electric vehicles. The capacity calibration results obtained during the heating cycles indicated that there was only a 3.61% reduction in capacity retention after 120 repetitive heating cycles, which was 0.008 Ah below the normal cycle at 293.15 K, even compared with room-temperature capacity calibration, thus reducing the effect on the battery’s lifetime. Therefore, the electromagnetic induction heating system with a heating strategy could achieve a beneficial compromise between the temperature rise behavior, cycle lifetime, and working ability, indicating considerable potential for the optimization of the heating effect.

Publisher

MDPI AG

Reference40 articles.

1. Research progress of low-temperature lithium-ion battery;Liang;J. Beijing Univ. Aeronaut. Astronaut.,2021

2. The state of the art on preheating lithium-ion batteries in cold weather;Wu;J. Energy Storage,2020

3. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application;Guo;Appl. Energy,2018

4. Computational design and refinement of self-heating lithium ion batteries;Yang;J. Power Sources,2016

5. Electrochemical impedance study on the low temperature of Li-ion batteries;Zhang;Electrochem. Acta,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3