An Early Warning Model for Turbine Intermediate-Stage Flux Failure Based on an Improved HEOA Algorithm Optimizing DMSE-GRU Model

Author:

Cheng Ming1,Zhang Qiang2,Cao Yue3ORCID

Affiliation:

1. State Power Investment Inner Mongolia Energy Co., Ltd., Hohhot 010020, China

2. Shanghai Power Equipment Research Institue Co., Ltd., Shanghai 200240, China

3. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

Abstract

As renewable energy sources such as wind and photovoltaics continue to enter the grid, their intermittency and instability leads to an increasing demand for peaking and frequency regulation. An efficient dynamic monitoring method is necessary to improve the safety level of intelligent operation and maintenance of power stations. To overcome the insufficient detection accuracy and poor adaptability of traditional methods, a novel fault early warning method with careful consideration of dynamic characteristics and model optimization is proposed. A combined loss function is proposed based on the dynamic time warping and the mean square error from the perspective of both shape similarity and time similarity. A prediction model of steam turbine intermediate-stage extraction temperature based on the gate recurrent unit is then proposed, and the change in prediction residuals is utilized as a fault warning criterion. In order to further improve the diagnostic accuracy, a human evolutionary optimization algorithm with lens opposition-based learning is proposed for model parameter adaptive optimization. Experiments on real-world normal and faulty operational data demonstrate that the proposed method can improve the detection accuracy by an average of 1.31% and 1.03% compared to the long short-term memory network, convolutional neural network, back propagation network, extreme learning machines, gradient boosting decision tree, and LightGBM models.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3