Abstract
Photovoltaic-thermal panels are hybrid systems that combine the two types of conventional solar energy technologies (photovoltaic and thermal panels) and simultaneously generate both thermal and electrical energy in a micro-cogeneration system. Like any co-generation system, there is an optimal balance that can be achieved between the thermal and electrical energy produced. For this reason, it is important to establish the relationship and inter-connection between the two. Limited research is available on the cogeneration interaction in a PVT system, so the novelty of this article lies in the consideration of the entire energy system connected to the PVT panel, including the storage tank and the consumer demand curve, and the investigation of the thermal parametric variation. This study analyses the impact of the variation of some thermal parameters of a domestic hot water tank on the electrical efficiency of a photovoltaic-thermal panel. A model of a system of photovoltaic-thermal panels is built in a transient systems simulation program (TRNSYS) and a one-factor-at-a-time analysis is carried out for the cold-water main temperature, tank size, tank outlet flow and consumer demand curve. The results show that the variation of the outlet flow to the consumer has the highest impact on the electrical efficiency, of about 6.8%. The next highest impact factor is the size of the tank with a variation of 4.7%. Matching the profile of the consumer is also an important aspect. It was observed that the peak electrical efficiency occurs during peak consumer demand. Finally, the instantaneous variation of the thermal and electrical power of the system was analysed as a function of the temperature at the inlet of the photovoltaic-thermal panel.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference36 articles.
1. Solar-Thermal and Hybrid Photovoltaic-Thermal Systems for Renewable Heating;Ramos,2017
2. Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence;Fahhad;Renew. Sustain. Energy Rev.,2014
3. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review
4. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors
5. A review of renewable energy based cogeneration technologies;Thilak Raj;Renew. Sustain. Energy Rev.,2011
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献