The Seismic Identification of Small Strike-Slip Faults in the Deep Sichuan Basin (SW China)

Author:

Li Hai12,Liu Jiawei1,Zheng Majia2,Li Siyao1,Long Hui2,Li Chenghai2,Huang Xuri1

Affiliation:

1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China

2. Shunan Gas Field, PetroChina Southwest Oil & Gasfield Company, Luzhou 646000, China

Abstract

Recently, the “sweet spot” of a fractured reservoir, controlled by a strike-slip fault, has been found and become the favorable target for economic exploitation of deep (>4500 m) tight gas reservoirs in the Sichuan Basin, Southwestern China. However, hidden faults of small vertical displacements (<20 m) are generally difficult to identify using low signal–noise rate seismic data for deep subsurfaces. In this study, we propose a seismic processing method to improve imaging of the hidden strike-slip fault in the central Sichuan Basin. On the basis of the multidirectional and multiscale decomposition and reconstruction processes, seismic information on the strike-slip fault can be automatically enhanced to improve images of it. Through seismic processing, the seismic resolution increased to a large extent enhancing the fault information and presenting a distinct fault plane rather than an ambiguous deflection of the seismic wave, as well as a clearer image of the sectional seismic attributes. Subsequently, many more small strike-slip faults, III–IV order faults with a vertical displacement, in the range of 5–20 m, were identified with the reprocessing data for the central Sichuan Basin. The pre-Mesozoic intracratonic strike-slip fault system was also characterized using segmentation and paralleled dispersive distribution in the Sichuan Basin, suggesting that this seismic process method is applicable for the identification of deep, small strike-slip faults, and there is great potential for the fractured reservoirs along small strike-slip fault zones in deep tight matrix reservoirs.

Funder

Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3