Matrix-Metalloproteinase-Responsive Brain-Derived Neurotrophic Factor for Spinal Cord Injury Repair

Author:

He Jiaxiong1,Cai Hui2,Wang Yuanyuan1,Yan Junyan1,Fan Caixia1ORCID

Affiliation:

1. School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China

2. Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Abstract

Brain-derived neurotrophic factor (BDNF) plays a vital role in supporting neuronal survival, differentiation, and promoting synaptogenesis, thereby facilitating synaptic plasticity in the central nervous system. Administration of exogenous BDNF is a crucial approach for treating central nervous system injuries. However, the inability of sustained drug release to match disease activity often leads to insufficient drug accumulation in the injured area (ineffectiveness) and severe side effects induced by the drug (toxicity). Matrix metalloproteinases (MMPs), especially MMP-2 and MMP-9, are typically upregulated after tissue damage, and their upregulated expression levels represent the degree of disease activity. In this study, we utilized bioengineering techniques to prepare a BDNF that can specifically bind to collagen and be released in response to MMP substrate cleavage (collagen binding domain tissue inhibitor of matrix metalloproteinases brain-derived neurotrophic factor, CBD-TIMP-BDNF). We verified the ability of CBD-BDNF and CBD-TIMP-BDNF to specifically bind to collagen through collagen binding experiments, examined the characteristics of CBD-TIMP-BDNF in response to MMP-2 to release BDNF, and detected the biological activities of both recombinant proteins. The results demonstrated that the established microenvironment-controlled BDNF release system can respond to MMP-2 to release BDNF. The recombinant proteins CBD-BDNF and CBD-TIMP-BDNF exhibited similar biological activities to the BDNF standard. Targeting the upregulated expression of MMPs after spinal cord injury as a trigger for drug release, it is expected to achieve on-demand release of BDNF in response to the severity of the disease.

Funder

Shaoxing University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3