Assessing Cognitive Workload Using Cardiovascular Measures and Voice

Author:

Magnusdottir Eydis H.,Johannsdottir Kamilla R.,Majumdar Arnab,Gudnason Jon

Abstract

Monitoring cognitive workload has the potential to improve both the performance and fidelity of human decision making. However, previous efforts towards discriminating further than binary levels (e.g., low/high or neutral/high) in cognitive workload classification have not been successful. This lack of sensitivity in cognitive workload measurements might be due to individual differences as well as inadequate methodology used to analyse the measured signal. In this paper, a method that combines the speech signal with cardiovascular measurements for screen and heartbeat classification is introduced. For validation, speech and cardiovascular signals from 97 university participants and 20 airline pilot participants were collected while cognitive stimuli of varying difficulty level were induced with the Stroop colour/word test. For the trinary classification scheme (low, medium, high cognitive workload) the prominent result using classifiers trained on each participant achieved 15.17 ± 0.79% and 17.38 ± 1.85% average misclassification rates indicating good discrimination at three levels of cognitive workload. Combining cardiovascular and speech measures synchronized to each heartbeat and consolidated with short-term dynamic measures might therefore provide enhanced sensitivity in cognitive workload monitoring. The results show that the influence of individual differences is a limiting factor for a generic classification and highlights the need for research to focus on methods that incorporate individual differences to achieve even better results. This method can potentially be used to measure and monitor workload in real time in operational environments.

Funder

The Icelandic Centre for Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3