Comparison of Different Machine Learning Methods for Predicting Cation Exchange Capacity Using Environmental and Remote Sensing Data

Author:

Saidi Sanaz,Ayoubi ShamsollahORCID,Shirvani Mehran,Azizi Kamran,Zeraatpisheh MojtabaORCID

Abstract

This study was conducted to examine the capability of topographic features and remote sensing data in combination with other auxiliary environmental variables (geology and geomorphology) to predict CEC by using different machine learning models ((random forest (RF), k-nearest neighbors (kNNs), Cubist model (Cu), and support vector machines (SVMs)) in the west of Iran. Accordingly, the collection of ninety-seven soil samples was performed from the surface layer (0–20 cm), and a number of soil properties and X-ray analyses, as well as CEC, were determined in the laboratory. The X-ray analysis showed that the clay types as the main dominant factor on CEC varied from illite to smectite. The results of modeling also displayed that in the training dataset based on 10-fold cross-validation, RF was identified as the best model for predicting CEC (R2 = 0.86; root mean square error: RMSE = 2.76; ratio of performance to deviation: RPD = 2.67), whereas the Cu model outperformed in the validation dataset (R2 = 0.49; RMSE = 4.51; RPD = 1.43)). RF, the best and most accurate model, was thus used to prepare the CEC map. The results confirm higher CEC in the early Quaternary deposits along with higher soil development and enrichment with smectite and vermiculite. On the other hand, lower CEC was observed in mountainous and coarse-textured soils (silt loam and sandy loam). The important variable analysis also showed that some topographic attributes (valley depth, elevation, slope, terrain ruggedness index—TRI) and remotely sensed data (ferric oxides, normalized difference moisture index—NDMI, and salinity index) could be considered as the most imperative variables explaining the variability of CEC by the best model in the study area.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3