A Critical Review of Sensors for the Continuous Monitoring of Smart and Sustainable Railway Infrastructures

Author:

Castillo-Mingorance Juan ManuelORCID,Sol-Sánchez MiguelORCID,Moreno-Navarro Fernando,Rubio-Gámez María CarmenORCID

Abstract

Real-time and continuous monitoring through smart sensors is considered to be the evolution of traditional track testing, enabling the earlier detection of the main failure modes that degrade railway tracks. Through carrying out preventive maintenance operations, infrastructure resources may be optimized, leading to smarter and more sustainable infrastructure. For this reason, under the larger goal of creating a synergy with various types of sensors for railway tracks, this article presents a critical review on the different, currently available sensors for smart and continuous monitoring. Specifically, the most appropriate monitoring technologies for each of the main railway track failure modes have been assessed and identified, thus deriving the advantages and capacities of each solution. Furthermore, this review presents some of the main experiences carried out to date in literature by using sensor technologies, such as strain gauges, piezoelectric sensors, fiber-optics, geophones and accelerometers. These technologies have proven to offer appropriate characteristics and accuracy for the continuous monitoring of a railway track’s structural state, being capable of measuring different parameters, such as deflections, deformations, stresses or accelerations that would permit the technical tracking of various forms of degradation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference75 articles.

1. Eurostat, Statistical Office of the European Communitieshttps://ec.europa.eu/eurostat/web/transport/data/database

2. Atlas of High Speed Rail in Spain, Madrid (España);Mesa,2017

3. Rail track costs management for efficient railway charges

4. Railway structure monitoring solutions using fibre Bragg grating sensors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3