High-Precision Carton Detection Based on Adaptive Image Augmentation for Unmanned Cargo Handling Tasks

Author:

Liang Bing1ORCID,Wang Xin1,Zhao Wenhao1,Wang Xiaobang1

Affiliation:

1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China

Abstract

Unattended intelligent cargo handling is an important means to improve the efficiency and safety of port cargo trans-shipment, where high-precision carton detection is an unquestioned prerequisite. Therefore, this paper introduces an adaptive image augmentation method for high-precision carton detection. First, the imaging parameters of the images are clustered into various scenarios, and the imaging parameters and perspectives are adaptively adjusted to achieve the automatic augmenting and balancing of the carton dataset in each scenario, which reduces the interference of the scenarios on the carton detection precision. Then, the carton boundary features are extracted and stochastically sampled to synthesize new images, thus enhancing the detection performance of the trained model for dense cargo boundaries. Moreover, the weight function of the hyperparameters of the trained model is constructed to achieve their preferential crossover during genetic evolution to ensure the training efficiency of the augmented dataset. Finally, an intelligent cargo handling platform is developed and field experiments are conducted. The outcomes of the experiments reveal that the method attains a detection precision of 0.828. This technique significantly enhances the detection precision by 18.1% and 4.4% when compared to the baseline and other methods, which provides a reliable guarantee for intelligent cargo handling processes.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3