Advanced Fabrication of miRNA-Based Electrochemical Nanobiosensor for Diagnosis of Breast Cancer

Author:

Kuru Cansu İlkeORCID,Akgöl SinanORCID

Abstract

Early diagnosis is the key to easy, low cost, and effective treatment of breast cancer. Therefore, studies have been accelerated to identify breast cancer diagnostic biomarkers and diagnose cancer before it progresses. The use of miR-155 as a potential biomarker in breast cancer, which has different levels at different stages of the disease, provides a simple serological test for breast cancer prognosis/diagnosis, follow-up, and treatment. Nanopolymers containing different functional groups that are formed by thiol affinity technique were synthesized by mini emulsion polymerization method and advanced characterization studies were carried out in this study to be used as bioactive layers in the nanobiosensor system for miRNA detection. The working conditions of the electrochemical nanobiosensor in which nanopolymers are used as bioactive layers were optimized. Analytical measurement characteristics and validation studies of the nanobiosensor were determined and analysis was performed on commercial blood serum. The potential of the developed electrochemical biosensor to be used as a medical diagnostic kit was explained by comparing it with commercial miRNA kit currently used for the detection of miR-155. This novel nanobiosensor provide sensitive, reliable, and rapid detection of miR-155 and it can provide the potential for breast cancer early diagnosis, prognosis, and follow-up.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant-based and microbes-mediated synthesis of nanobioconjugates and their applications;Bioconjugated Materials Part 1 Preparation, Characterization and Applications in Therapeutics, Environmental monitoring and Point-of-care diagnostics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3