New Polymers In Silico Generation and Properties Prediction

Author:

Knizhnik Andrey A.12,Komarov Pavel V.34ORCID,Potapkin Boris V.12,Shirabaykin Denis B.1,Sinitsa Alexander S.12ORCID,Trepalin Sergey V.15

Affiliation:

1. Kintech Lab Ltd., 3rd Khoroshevskaya Str. 12, 123298 Moscow, Russia

2. National Research Center “Kurchatov Institute”, Akademika Kurchatova Sq., 1, 123182 Moscow, Russia

3. Institute of Organoelement Compounds RAS, Vavilova St. 28, 119991 Moscow, Russia

4. General Physics Department, Tver State University, Sadovy Str. 35, 170002 Tver, Russia

5. All Russian Institute for Scientific and Technical Information RAS, Usievicha Str. 20, 125215 Moscow, Russia

Abstract

We present a theoretical approach for the in silico generation of new polymer structures for the systematic search for new materials with advanced properties. It is based on Bicerano’s Regression Model (RM), which uses the structure of the smallest repeating unit (SRU) for fast and adequate prediction of polymer properties. We have developed the programs (a) GenStruc, for generating the new polymer SRUs using the enumeration and Monte Carlo algorithms, and (b) PolyPred, for predicting properties for a given input polymer as well as for multiple structures stored in the database files. The structure database from the original Bicerano publication is used to create databases of backbones and pendant groups. A database of 5,142,153 unique SRUs is generated using the scaffold-based combinatorial method. We show that using only known backbones of the polymer SRU and varying the pendant groups can significantly improve the predicted extreme values of polymer properties. Analysis of the obtained results for the dielectric constant and refractive index shows that the values of the dielectric constant are higher for polyhydrazides than for polyhydroxylamines. The high value predicted for the refractive index of polythiophene and its derivatives is in agreement with the experimental data.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3