Abstract
This work presents the utilization of amphiphilic poly(oligo(ethylene glycol) methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate), P(OEGMA-co-DIPAEMA), hyperbranched (HB) copolymers, forming polymeric aggregates in aqueous media, as building nanocomponents and nanocarriers for the entrapment of magnetic cobalt ferrite nanoparticles (CoFe2O4, MNPs), and the hydrophobic drug curcumin (CUR) in their hydrophobic domains. Dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM) techniques were used to evaluate the multifunctional hybrid nanostructures formed in aqueous media by co-assembly of the components and their solution properties. Magnetic nanoparticles (MNPs) or MNPs/CUR were co-assembled effectively with pre-existing polymer aggregates, leading to well-defined hybrid nanostructures. Magnetophoresis experiments revealed that the hybrid nanostructures retain the magnetic properties of MNPs after their co-assembly with the hyperbranched copolymers. The hybrid nanostructures demonstrate a significant colloidal stability under physiological conditions. Furthermore, MNPs/CUR-loaded aggregates displayed considerable fluorescence as demonstrated by fluorescence spectroscopy. These hybrid nanostructures could be promising candidates for drug delivery and bio-imaging applications.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献