Two-Dimensional Nanograting Fabrication by Multistep Nanoimprint Lithography and Ion Beam Etching

Author:

Buhl Janek,Yoo Danbi,Köpke Markus,Gerken MartinaORCID

Abstract

The application of nanopatterned electrode materials is a promising method to improve the performance of thin-film optoelectronic devices such as organic light-emitting diodes (OLEDs) and organic photovoltaics. Light coupling to active layers is enhanced by employing nanopatterns specifically tailored to the device structure. A range of different nanopatterns is typically evaluated during the development process. Fabrication of each of these nanopatterns using electron-beam lithography is time- and cost-intensive, particularly for larger-scale devices, due to the serial nature of electron beam writing. Here, we present a method to generate nanopatterns of varying depth with different nanostructure designs from a single one-dimensional grating template structure with fixed grating depth. We employ multiple subsequent steps of UV nanoimprint lithography, curing, and ion beam etching to fabricate greyscale two-dimensional nanopatterns. In this work, we present variable greyscale nanopatterning of the widely used electrode material indium tin oxide. We demonstrate the fabrication of periodic pillar-like nanostructures with different period lengths and heights in the two grating directions. The patterned films can be used either for immediate device fabrication or pattern reproduction by conventional nanoimprint lithography. Pattern reproduction is particularly interesting for the large-scale, cost-efficient fabrication of flexible optoelectronic devices.

Funder

Interreg

Publisher

MDPI AG

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3