Abstract
3D printing is a promising technology for creating polymer objects of a given architecture with specified functional properties. In fact, the choice of filaments for 3D printing is quite limited. Here, we report a process for producing polystyrene filaments with 0.0025–2 wt.% single-walled carbon nanotubes (SWCNTs) by extruding crushed polystyrene composites. The resulting filaments are characterized by a high uniformity of filler distribution and the absence of air pores. Comparison of microscopy data and electromagnetic properties of base composites and composite materials printed from filaments showed that extrusion and printing improve SWCNT dispersion. The proposed method can be used to create filaments for 3D printing of objects from various base polymers containing functional fillers up to the electrical percolation threshold and above.
Funder
Ministry of Science and Higher Education of the Russian Federation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献