Synthetic Approach to Rice Waste-Derived Carbon-Based Nanomaterials and Their Applications

Author:

Mubarik Shamroza,Qureshi Nawal,Sattar ZainabORCID,Shaheen Aqeela,Kalsoom Ambreen,Imran Marryam,Hanif Farzana

Abstract

The utilization of biomass waste to produce valuable products has extraordinary advantages as far as both the economy and climate are concerned, which have become particularly significant lately. The large-scale manufacturing of agricultural waste, mainly rice by-products (rice husk, rice straw, and rice bran), empowers them to be the most broadly examined biomasses as they contain lignin, cellulose, and hemicellulose. Rice waste was first used to incorporate bulk materials, while the manufacturing of versatile nanostructures from rice waste at low cost has been developed in recent years and attracts much consideration nowadays. Carbon-based nanomaterials including graphene, carbon nanotubes, carbon dots, fullerenes, and carbon nanofibers have tremendous potential in climate and energy-related applications. Various methods have been reported to synthesize high-value carbon nanomaterials, but the use of green technology for the synthesis of carbon nanomaterials is most common nowadays because of the abundant availability of the starting precursor, non-toxicity, low fabrication cost, ease of modification, and eco-friendly nature; therefore, reusing low-value biomass waste for the processing of renewable materials to fabricate high-value products is remarkable. Carbon nanomaterials derived from rice waste have broad applications in various disciplines owing to their distinctive physicochemical, electrical, optical, mechanical, thermal, and enhanced biocompatibility properties. The main objective of this review and basic criteria of selecting examples and explanations is to highlight the green routes for the synthesis of carbon nanomaterials—i.e., graphene, carbon nanotubes, and carbon dots—from rice biomass waste, and their extensive applications in biomedical research (bio-imaging), environmental (water remediation), and energy-related (electrodes for supercapacitors, Li-ion battery, fuel cells, and solar cells) applications. This review summarizes recent advancements, challenges, and trends for rice waste obtained from renewable resources for utilization in the fabrication of versatile carbon-based nanomaterials.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3