New Machine Learning Approach for the Optimization of Nano-Hybrid Formulations

Author:

Barbosa Raquel de M.ORCID,Lima Cleanne C.,Oliveira Fabio F. deORCID,Câmara Gabriel B. M.ORCID,Viseras CésarORCID,Moura Tulio F. A. de Lima e,Souto Eliana B.ORCID,Severino PatriciaORCID,Raffin Fernanda N.,Fernandes Marcelo A. C.ORCID

Abstract

Nano-hybrid systems are products of interactions between organic and inorganic materials designed and planned to develop drug delivery platforms that can be self-assembled. Poloxamine, commercially available as Tetronic®, is formed by blocks of copolymers consisting of poly (ethylene oxide) (PEO) and poly (propylene oxide) (PPO) units arranged in a four-armed star shape. Structurally, Tetronics are similar to Pluronics®, with an additional feature as they are also pH-dependent due to their central ethylenediamine unit. Laponite is a synthetic clay arranged in the form of discs with a diameter of approximately 25 nm and a thickness of 1 nm. Both compounds are biocompatible and considered as candidates for the formation of carrier systems. The objective is to explore associations between a Tetronic (T1304) and LAP (Laponite) at concentrations of 1–20% (w/w) and 0–3% (w/w), respectively. Response surface methodology (RMS) and two types of machine learning (multilayer perceptron (MLP) and support vector machine (SVM)) were used to evaluate the physical behavior of the systems and the β-Lapachone (β-Lap) solubility in the systems. β-Lap (model drug with low solubility in water) has antiviral, antiparasitic, antitumor, and anti-inflammatory properties. The results show an adequate machine learning approach to predict the physical behavior of nanocarrier systems with and without the presence of LAP. Additionally, the analysis performed with SVM showed better results (R2 > 0.97) in terms of data adjustment in the evaluation of β-Lap solubility. Furthermore, this work presents a new methodology for classifying phase behavior using ML. The new methodology allows the creation of a phase behavior surface for different concentrations of T1304 and LAP at different pHs and temperatures. The machine learning strategies used were excellent in assisting in the optimized development of new nano-hybrid platforms.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3