A Lightweight Human Fall Detection Network

Author:

Kan Xi1,Zhu Shenghao2ORCID,Zhang Yonghong12ORCID,Qian Chengshan12

Affiliation:

1. School of the Internet of Things Engineering, Wuxi University, Wuxi 214105, China

2. School of Automation, Nanjing University of Information Science & Technology, Nanjing 211800, China

Abstract

The rising issue of an aging population has intensified the focus on the health concerns of the elderly. Among these concerns, falls have emerged as a predominant health threat for this demographic. The YOLOv5 family represents the forefront of techniques for human fall detection. However, this algorithm, although advanced, grapples with issues such as computational demands, challenges in hardware integration, and vulnerability to occlusions in the designated target group. To address these limitations, we introduce a pioneering lightweight approach named CGNS-YOLO for human fall detection. Our method incorporates both the GSConv module and the GDCN module to reconfigure the neck network of YOLOv5s. The objective behind this modification is to diminish the model size, curtail floating-point computations during feature channel fusion, and bolster feature extraction efficacy, thereby enhancing hardware adaptability. We also integrate a normalization-based attention module (NAM) into the framework, which concentrates on salient fall-related data and deemphasizes less pertinent information. This strategic refinement augments the algorithm’s precision. By embedding the SCYLLA Intersection over Union (SIoU) loss function, our model benefits from faster convergence and heightened detection precision. We evaluated our model using the Multicam dataset and the Le2i Fall Detection dataset. Our findings indicate a 1.2% enhancement in detection accuracy compared with the conventional YOLOv5s framework. Notably, our model realized a 20.3% decrease in parameter tally and a 29.6% drop in floating-point operations. A comprehensive instance analysis and comparative assessments underscore the method’s superiority and efficacy.

Funder

National Natural Science Foundation for Young Scholars of China

Practice Innovation Program of Jiangsu Province

The Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3