Computing Offloading Based on TD3 Algorithm in Cache-Assisted Vehicular NOMA–MEC Networks

Author:

Zhou Tianqing1,Xu Ming1,Qin Dong2ORCID,Nie Xuefang1ORCID,Li Xuan1,Li Chunguo3

Affiliation:

1. School of Information Engineering, East China Jiaotong University, Nanchang 330013, China

2. School of Information Engineering, Nanchang University, Nanchang 330031, China

3. School of Information Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

In this paper, in order to reduce the energy consumption and time of data transmission, the non-orthogonal multiple access (NOMA) and mobile edge caching technologies are jointly considered in mobile edge computing (MEC) networks. As for the cache-assisted vehicular NOMA–MEC networks, a problem of minimizing the energy consumed by vehicles (mobile devices, MDs) is formulated under time and resource constraints, which jointly optimize the computing resource allocation, subchannel selection, device association, offloading and caching decisions. To solve the formulated problem, we develop an effective joint computation offloading and task-caching algorithm based on the twin-delayed deep deterministic policy gradient (TD3) algorithm. Such a TD3-based offloading (TD3O) algorithm includes a designed action transformation (AT) algorithm used for transforming continuous action space into a discrete one. In addition, to solve the formulated problem in a non-iterative manner, an effective heuristic algorithm (HA) is also designed. As for the designed algorithms, we provide some detailed analyses of computation complexity and convergence, and give some meaningful insights through simulation. Simulation results show that the TD3O algorithm could achieve lower local energy consumption than several benchmark algorithms, and HA could achieve lower consumption than the completely offloading algorithm and local execution algorithm.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Jiangxi Provincial Natural Science Foundation

key research and development plan of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3