Risk Identification and Conflict Prediction from Videos Based on TTC-ML of a Multi-Lane Weaving Area

Author:

Xia Yulan,Qin Yaqin,Li XiaobingORCID,Xie JimingORCID

Abstract

Crash risk identification and prediction are expected to play an important role in traffic accident prevention. However, most of the existing studies focus only on highways, not on multi-lane weaving areas. In this paper, a potential collision risk identification and conflict prediction model based on extending Time-to-Collision-Machine Learning (TTC-ML) for multi-lane weaving zone was proposed. The model can accurately learn various features, such as vehicle operation characteristics, risk and conflict distributions, and physical zoning characteristics in the weaving area. Specifically, TTC was used to capture the collision risk severity, and ML extracted vehicle trajectory features. After normalizing and dimensionality reduction of the vehicle trajectory dataset, Naive Bayes, Logistic Regression, and Gradient Boosting Decision Tree (GBDT) models were selected for traffic conflict prediction, and the experiments showed that the GBDT model outperforms two remaining models in terms of prediction accuracy, precision, false-positive rate (FPR) and Area Under Curve (AUC). The research findings of this paper help traffic management departments develop and optimize traffic control schemes, which can be applied to Intelligent Vehicle Infrastructure Cooperative Systems (IVICS) dynamic warning.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3