Efficient Self-Attention Model for Speech Recognition-Based Assistive Robots Control

Author:

Poirier Samuel12ORCID,Côté-Allard Ulysse3ORCID,Routhier François12ORCID,Campeau-Lecours Alexandre12ORCID

Affiliation:

1. Université Laval, Quebec City, QC G1V 0A6, Canada

2. Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada

3. Department of Technology Systems, University of Oslo, 0313 Oslo, Norway

Abstract

Assistive robots are tools that people living with upper body disabilities can leverage to autonomously perform Activities of Daily Living (ADL). Unfortunately, conventional control methods still rely on low-dimensional, easy-to-implement interfaces such as joysticks that tend to be unintuitive and cumbersome to use. In contrast, vocal commands may represent a viable and intuitive alternative. This work represents an important step toward providing a viable vocal interface for people living with upper limb disabilities by proposing a novel lightweight vocal command recognition system. The proposed model leverages the MobileNet2 architecture, augmenting it with a novel approach to the self-attention mechanism, achieving a new state-of-the-art performance for Keyword Spotting (KWS) on the Google Speech Commands Dataset (GSCD). Moreover, this work presents a new dataset, referred to as the French Speech Commands Dataset (FSCD), comprising 4963 vocal command utterances. Using the GSCD as the source, we used Transfer Learning (TL) to adapt the model to this cross-language task. TL has been shown to significantly improve the model performance on the FSCD. The viability of the proposed approach is further demonstrated through real-life control of a robotic arm by four healthy participants using both the proposed vocal interface and a joystick.

Funder

Centre interdisciplinaire de recherche en réadaptation et intégration sociale

Fonds de recherche du Québec–Santé (FRQS) Research Scholar

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3