Method to Solve Underwater Laser Weak Waves and Superimposed Waves

Author:

Kang Chuanli12,Lin Zitao1ORCID,Wu Siyi1,Yang Jiale1,Zhang Siyao1,Zhang Sai1,Li Xuanhao1

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China

2. Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China

Abstract

With the rapid development of Lidar technology, the use of Lidar for underwater terrain detection has become feasible. There is still a challenge in the process of signal resolution: the underwater laser echo signal is different to propagating in the air, and it is easy to produce weak waves and superimposed waves. However, existing waveform decomposition methods are not effective in processing these waveform signals, and the underwater waveform signal cannot be correctly decomposed, resulting in subsequent data-processing errors. To address these issues, this study used a drone equipped with a 532 nm laser to detect a pond as the study background. This paper proposes an improved inflection point selection decomposition method to estimate the parameter. By comparing it with other decomposition methods, we found that the RMSE is 2.544 and R2 is 0.995975, which is more stable and accurate. After estimating the parameters, this study used oscillating particle swarm optimization (OPSO) and the Levenberg–Marquardt algorithm (LM) to optimize the estimated parameters; the final results show that the method in this paper is closer to the original waveform. In order to verify the processing effect of the method on complex waveform, this paper decomposes and optimizes the simulated complex waveforms; the final RMSE is 0.0016, R2 is 1, and the Gaussian component after decomposition can fully represent the original waveform. This method is better than other decomposition methods in complex waveform decomposition, especially regarding weak waves and superimposed waves.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3