Determination of Optimal Predictors and Sampling Frequency to Develop Nutrient Soft Sensors Using Random Forest

Author:

Arhab Muhammad1,Huang Jingshui1ORCID

Affiliation:

1. Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany

Abstract

Despite advancements in sensor technology, monitoring nutrients in situ and in real-time is still challenging and expensive. Soft sensors, based on data-driven models, offer an alternative to direct nutrient measurements. However, the high demand for data required for their development poses logistical issues with data handling. To address this, the study aimed to determine the optimal subset of predictors and the sampling frequency for developing nutrient soft sensors using random forest. The study used water quality data at 15-min intervals from 2 automatic stations on the Main River, Germany, and included dissolved oxygen, temperature, conductivity, pH, streamflow, and cyclical time features as predictors. The optimal subset of predictors was identified using forward subset selection, and the models fitted with the optimal predictors produced R2 values above 0.95 for nitrate, orthophosphate, and ammonium for both stations. The study then trained the models on 40 sampling frequencies, ranging from monthly to 15-min intervals. The results showed that as the sampling frequency increased, the model’s performance, measured by RMSE, improved. The optimal balance between sampling frequency and model performance was identified using a knee-point determination algorithm. The optimal sampling frequency for nitrate was 3.6 and 2.8 h for the 2 stations, respectively. For orthophosphate, it was 2.4 and 1.8 h. For ammonium, it was 2.2 h for 1 station. The study highlights the utility of surrogate models for monitoring nutrient levels and demonstrates that nutrient soft sensors can function with fewer predictors at lower frequencies without significantly decreasing performance.

Funder

the Open Access Publishing Fund of the Technical University of Munich

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3