PHAM-YOLO: A Parallel Hybrid Attention Mechanism Network for Defect Detection of Meter in Substation

Author:

Dong Hao123ORCID,Yuan Mu4,Wang Shu2,Zhang Long2,Bao Wenxia4,Liu Yong12,Hu Qingyuan13

Affiliation:

1. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China

2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

3. China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China

4. School of Electronics and Information Engineering, Anhui University, Hefei 230601, China

Abstract

Accurate detection and timely treatment of component defects in substations is an important measure to ensure the safe operation of power systems. In this study, taking substation meters as an example, a dataset of common meter defects, such as a fuzzy or damaged dial on the meter and broken meter housing, is constructed from the images of manual inspection in power systems. There are several challenges involved in accurately detecting defects in substation meter images, such as the complex background, different meter sizes and large differences in the shapes of meter defects. Therefore, this paper proposes the PHAM-YOLO (Parallel Hybrid Attention Mechanism You Only Look Once) network for automatic detection of substation meter defects. In order to make the network pay attention to the key areas against the complex background of the meter defect images and the differences between different defect features, a Parallel Hybrid Attention Mechanism (PHAM) module is designed and added to the backbone of YOLOv5. PHAM integration of local and non-local correlation information can highlight these differences while remaining focused on the meter defect features. To improve the expressive ability of the feature map, a Spatial Pyramid Pooling Fast (SPPF) module is introduced, which pools the input feature map using a continuous fixed convolution kernel, fusing the feature maps of different receptive fields. Bounding box regression (BBR) is the key way to determine object positioning performance in defect detection. EIOU (Efficient Intersection over Union) is, therefore, introduced as a boundary loss function to solve the ambiguity of the CIOU (Complete Intersection Over Union) loss function, making the BBR regression more accurate. The experimental results show that the Average Precision Mean (mAP), Precision (P) and Recall (R) of the proposed PHAM-YOLO network in the dataset are 78.3%, 78.3%, and 79.9%, respectively, with mAP being improved by 2.7% compared to the original model and higher than SSD, Fast R-CNN, etc.

Funder

Key Science and Technology program of China Tobacco Corporation

National Key Research and Development Program of China

Anhui Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3