Abstract
Dense β-SiC coating with 3C-structure was utilized as a dry cold forging punch and core-die. Pure titanium T328H wires of industrial grade II were employed as a work material. No adhesion or galling of metallic titanium was detected on the contact interface between this β-SiC die and titanium work, even after this continuous forging process, up to a reduction in thickness by 70%. SEM (Scanning Electron Microscopy) and EDX (Electron Dispersive X-ray spectroscopy) were utilized to analyze this contact interface. A very thin titanium oxide layer was in situ formed in the radial direction from the center of the contact interface. Isolated carbon from β-SiC agglomerated and distributed in dots at the center of the initial contact interface. Raman spectroscopy was utilized, yielding the discovery that this carbon is unbound as a free carbon or not bound in SiC or TiC and that intermediate titanium oxides are formed with TiO2 as a tribofilm.
Subject
General Materials Science
Reference22 articles.
1. Biomedical applications of titanium and its alloys
2. Introduction to Tribology;Bhushan,2002
3. Galling phenomena in metal forming;Dohda;Friction,2020
4. Forging of metals and alloys for biomedical applications;Chandrasekaran,2010
5. Tribology of dry deep-drawing of various metal sheets with use of ceramics tools
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献