Abstract
The microstructures, mechanical properties, and thermal conductivity (TC) of Al-2Fe-xCo (x = 0~0.8) alloys in as-cast, homogeneous annealed, and cool rolled states are systematically studied. Results indicate that appropriate Co modification (x ≤ 0.5) simultaneously improves the thermal and mechanical properties of as-cast Al-2Fe alloys. The improvement of TC is attributed to ameliorating the morphology of primary Al3Fe phases from needles to short rods and fine particles, which decreases the scattering probability of free electrons during the electronic transmission. However, further increasing the Co content (x = 0.8) decreases the TC due to the formation of a coarse plate-like Al2FeCo phase. Besides, the thermal conductivity of annealed Al-2Fe-xCo alloys is higher than that of as-cast alloys because of the elimination of lattice defects and spheroidization of Al3Fe phases. After cool rolling with 80 % deformation, thermal conductivity of alloys slightly increases due to the breaking down of Al2FeCo phases. The rolled Al-2Fe-0.3Co alloy exhibits the highest thermal conductivity, which is about 225 W/(m·K), approximately 11 % higher than the as-cast Al-2Fe sample. The ultimate tensile strength (UTS) and elongation (EL) of as-cast Al-2Fe-0.5Co (UTS: 138 MPa; EL: 22.0 %) are increased by 35 % and 69 %, respectively, compared with those of unmodified alloy (UTS: 102 MPa; EL: 13.0 %).
Subject
General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献