Modeling Local Bond Stress–Slip Relationships of Reinforcing Bars Embedded in Concrete with Different Strengths

Author:

Tang Chao-Wei,Cheng Chiu-Kuei

Abstract

Although many different analytical models of local bond stress–slip have been proposed, considering the possible differences between materials in different countries, their applicability needs to be further explored. In this paper, the local bond stress–slip characteristics of reinforcing bars embedded in concrete with different strengths were experimentally studied. The experimental variables included the concrete strength (20, 40, and 60 MPa) and deformed rebar size (#4, #6, and #8). The experimental results of the bond stress–slip relationship were compared with the Euro-International Concrete Committee (CEB-Comité Euro-International du Béton)-International Federation for Prestressing (FIP-Fédération Internationale de la Précontrainte) Model Code and prediction models found in the literature. In addition, based on the test results, an empirical model of the bond stress–slip relationship was proposed. The evaluation and comparison results show that, regardless of the concrete strength grades, the predicted value calculated using the CEB-FIP Model Code will underestimate the bond strength of the specimens with different steel bar diameters. From this perspective, it is more conservative. In contrast, the proposed model can predict the test results with a reasonable accuracy.

Publisher

MDPI AG

Subject

General Materials Science

Reference53 articles.

1. Design of concrete structures, Fifteenth Edition;Darwin,2016

2. Building Code Requirements for Structural Concrete and Commentary (ACI 318-11),2011

3. Bond. and Development of Straight Reinforcing Bars in Tension (ACI 408R-03),2003

4. Mechanics of Bond and Slip of Deformed Reinforcement;Lutz;ACI J.,1967

5. Review of Research on Bond-Slip of Reinforced Concrete;Zheng;Mater. Rev. A: Rev. Pap.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3