Abstract
In this research, hot deformation experiments of 316L stainless steel were carried out at a temperature range of 800–1000 °C and strain rate of 2 × 10−3–2 × 10−1. The flow stress behavior of 316L stainless steel was found to be highly dependent on the strain rate and temperature. After the experimental study, the flow stress was modeled using the Arrhenius-type constitutive equation, a neural network approach, and the support vector regression algorithm. The present research mainly focused on a comparative study of three algorithms for modeling the characteristics of hot deformation. The results indicated that the neural network approach and the support vector regression algorithm could be used to model the flow stress better than the approach of the Arrhenius-type equation. The modeling efficiency of the support vector regression algorithm was also found to be more efficient than the algorithm for neural networks.
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献