Characteristics and Differences Analysis for Thermal Evolution of Wufeng–Longmaxi Shale, Southern Sichuan Basin, SW China

Author:

Lyu Peixi,Meng JianghuiORCID,Pan RenfangORCID,Yi Xuefei,Yue Tao,Zhang Ning

Abstract

The marine shale of the Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation is the main source rock and the target of shale gas exploration in the southern Sichuan Basin. The maturity of organic matter (OM) is a vital indicator for source rock evaluation. Due to the lack of vitrinite, the organic matter maturity of the Wufeng–Longmaxi Formations in the southern Sichuan Basin is difficult to accurately evaluate. In total, 33 core samples of the Wufeng–Longmaxi Formations in the southern Sichuan Basin were selected to observe the optical characteristics of solid bitumen and graptolites and measure their random reflectance. Simultaneously, Raman spectroscopic parameters of kerogen were also used to quantitatively analyze the change in maturity. By using Raman spectroscopic parameters as mediators, conversion equations between graptolite random reflectance (GRor) and equivalent vitrinite reflectance (EqVRo) were established. Taking the calculation results of EqVRo as constraints, the tectono-thermal evolution history of Wufeng–Longmaxi Shale in the southern Sichuan Basin is constructed through basin modelling. The results show that the maturity of Wufeng–Longmaxi Shale in the western Changning, Luzhou-western Chongqing, eastern Changning and Weiyuan areas decreases successively. The EqVRo falls in the ranges of 3.61%~3.91%, 2.92%~3.57%, 3.08%~3.25%, 2.41%~3.12%, and the average EqVRo is 3.73%, 3.30%, 3.18% and 2.80%, respectively. Thermal evolution in western Changning was controlled by the thermal effect of the Emeishan mantle plume and paleo-burial depth, while the thermal evolution of other areas was mainly controlled by paleo-burial depth. This study provides a reliable parameter for the evaluation of thermal maturity and makes a more accurate calibration of the maturity of the Wufeng–Longmaxi Formations in the southern Sichuan Basin; it also expounds the factors for the differences in thermal evolution in different parts of the area.

Funder

Scientific and Technological Innovation Team of the outstanding Young and Mid-age in college of Hubei Province

National Science Fund for Distinguished Young Scholars

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3