Mineralogy, Geochemistry, and Stable Isotopes (C, O, S) of Hot Spring Waters and Associated Travertines near Tamiahua Lagoon, Veracruz, Gulf of Mexico (Mexico)

Author:

Porras-Toribio Israel,Pi-Puig Teresa,Villanueva-Estrada Ruth EstherORCID,Rubio-Ramos Marco AntonioORCID,Solé JesúsORCID

Abstract

Laminated travertine forms in and around an active hot spring on the west coast of Tamiahua Lagoon, north of the state of Veracruz, Mexico. Fluid chemistry is characterized by discharging slightly acidic pH hot water and gas at a constant flow rate. Moreover, finely interbedded mineralogical products from discharging waters at 70 °C host scattered hydrocarbons. The mineralogy and geochemistry of the travertine formations were characterized to determine their origin. Rock samples were collected and further studied by transmitted light petrography, X-ray diffraction, and EDS-coupled scanning electron microprobe. Identified mineralogy from outcrop samples includes aragonite, gypsum, anhydrite, and elemental sulfur as essential minerals, with calcite, celestine, barite, jarosite, opal, and fluorite as accessory minerals. Isotopic analyses for C and O were determined in carbonates, S isotope ratios on both elemental sulfur and sulfates, whereas measurements for trace elements and lanthanides were performed on carbonates. A suit of brines and condensates from gas samples was collected for H and O isotopic analyses and concentration determinations of the main ions and major and trace elements. Isotopic values of δ13C and δ18O of aragonite are in the range of +1.75‰ to +2.37‰ and −1.70‰ to −0.78‰, respectively. The δ34S isotopic values of native sulfur and sulfates ranged from −4.0‰ to +1.2‰. The isotopic values of δ2H (−5.50‰) and δ18O (+7.77‰) of hot water samples collected in terraces where aragonite precipitates suggest a mixture between meteoric water and the Gulf of Mexico oil-field related waters. It was concluded that the aragonitic formations near Tamiahua Lagoon are hypogenic and were generated by CO2 and H2S emanations of deep origin and by oxidation-reduction reactions that can be linked to surficial bacterial activity.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3