Effect of the Fracturing Degree of the Source Rock on Rock Avalanche River-Blocking Behavior Based on the Coupled Eulerian-Lagrangian Technique

Author:

Bao Yiding,Chen Jianping,Zhang Weifeng,Li Yuchao,Li Zhihai,Du Ni

Abstract

In this study, the effect of the fracturing degree of the source rock on rock avalanche river-blocking behavior was investigated. The study included the analysis of mass movement behavior, impulse wave behavior, and the formation of landslide dams. The study included a series of simulations of rock avalanche river-blocking based on the coupled Eulerian-Lagrangian (CEL) technique. Prior to the simulation, a water column collapse model was applied to validate the use of the CEL technique on fluid-structure interaction, and to calibrate the material parameters. The source rock in the rock avalanche simulation was cut by different groups of structural planes, with the number of 0 × 0 × 0, 1 × 1 × 1, 4 × 4 × 4, 9 × 9 × 9, 14 × 14 × 14, 19 × 19 × 19 in each dimension, respectively, to represent different fracturing degrees, on the premise of the same volume and shape of the source rock. The simulation results showed that the sliding mass exhibited structure stabilization, such that the structure of the sliding mass gradually stabilized to a steady status over time, in the mass movement process. The structure stabilization made the center of the sliding mass constantly decrease, and provided a higher speed of movement for the rock avalanches with higher fracturing degrees of the source rock. As for the impulse wave behavior, with the increase in the fracturing degree of the source rock, the maximum kinetic energy of the water decreased, and the maximum height and propagation speed of the impulse waves decreased, which indicated that the maximum height and the propagation speed of the impulse waves were positively correlated with the maximum kinetic energy of the water. In regard to the formation of the landslide dams, when the fracturing degree of the source rock was low, the shape of the landslide dam was very different. With the increase of the fracturing degree of the source rock, the shapes of the landslide dams stabilized, and varied slightly after the fracturing degree of the source rock reached a threshold value.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3