Abstract
An integrated geophysical and geochemical investigation was conducted to investigate the metallic minerals hosted in the mafic and ultramafic rocks in the Bela Ophiolitic Complex. Two thousand magnetic observations were made along with six vertical electrical soundings, with Induced Polarization (IP) targeting the anomalous magnetic zones. The magnetic raw field data were interpreted qualitatively and quantitatively, and two anomalous zones (A1 and A2) were identified on the magnetic maps. The residual magnetic values in the high-magnetic-anomalous zone (A2) ranged from 310 nT to 550 nT, while the magnetic signatures in the low-magnetic zone (A1) ranged from –190 nT to 50 nT. The high-anomalous zone (A2) was distinguished by a high IP value ranging from 3.5 mV/V to 15.1 mV/V and a low apparent and true resistivity signature of 50 ohm·m. Whereas, the low-anomalous zone (A1) was distinguished by very low IP values ranging from 0.78 mV/V to 4.1 mV/V and a very high apparent and true resistivity of 100 ohm·m. The Euler deconvolution was used to determine the depth of the promising zone, which for A1 and A2 was in the 100 m range. The statistical analysis was carried out using hierarchical classification to distinguish between background and anomalous data. The high-magnetic anomalous signature of probable mineralization was in the range of 46,181 nT–46,628 nT, with a total intensity range of 783 nT–1166 nT. The major and trace-element analysis of the 22 rock and stream sediments collected from the high-magnetic-anomalous zone confirmed the mineralization type. The geomagnetic and geophysical cross sections revealed that anomalous mineralization was concentrated with the anticlinal Bela Ophiolitic Complex. The generated results also aided in the identification of rock boundaries, depth, and hidden faults in the area. The findings revealed that the study area has excellent mineralization associated with the ultramafic-rock sequence.
Funder
The research is partiallyMinistry of Science and Higher Education of the Russian Federation under the strategic academic leadership program ‘Priority 2030’
Subject
Geology,Geotechnical Engineering and Engineering Geology