A Quantitative Relationship between Oxidation Index and Chalcopyrite Flotation Recovery

Author:

Yang Xu,Li YubiaoORCID,Chen Wen,Duan Wanqing,Xiao Qing,Jiang TingtingORCID

Abstract

The surface oxidation of chalcopyrite is one of the most important factors affecting its flotation performance. In this study, a critical oxidation degree is proposed to define “slight” and “significant” oxidation in terms of surface species and chalcopyrite flotation recovery. Slight oxidation enhanced chalcopyrite hydrophobicity, but significant oxidation reduced its recovery apparently. Microthermokinetic measurements indicated that the apparent activation energy (Ea) of chalcopyrite oxidation was reduced from around 173 kJ·mol−1 to 163 kJ·mol−1 when the reaction changed from slight oxidation to significant oxidation when applying H2O2. The surface oxidation degree was defined as the ratio of hydrophilic species to hydrophobic species. The highest recovery (94.8%) and contact angle (93°) were achieved at a concentration of 0.1 vol.% H2O2, with the lowest oxidation degree of 0.388 being observed. The oxidation degree was correlated to the flotation recovery, with a quantitative relationship (y = −298.81x + 213.05, y and x represent flotation recovery and oxidation degree, respectively, 0.388 ≤ x ≤ 0.618) being established, thereby giving a guideline to better manage chalcopyrite flotation by controlling its surface oxidation and SBX adsorption on chalcopyrite surfaces.

Funder

National Natural Science Foundation of China

Hubei Key Laboratory of Mineral Resources Processing & Environment

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3