Fast-Curing Geopolymer Foams with an Enhanced Pore Homogeneity Derived by Hydrogen Peroxide and Sodium Dodecyl Sulfate Surfactant

Author:

Kim Kyung Won,Lim Hyung MiORCID,Yoon Seog-YoungORCID,Ko HyunseokORCID

Abstract

The properties of porous and lightweight ceramic foam that can be cured at room temperature using metakaolin-based geopolymers were studied. A geopolymer slurry was prepared using metakaolin and a potassium-based alkaline medium at room temperature, and the obtained viscous paste was expanded via gaseous methods, by means of the decomposition of peroxide at room temperature. Therefore, geopolymer (GP) foam developed in this study through multivariate geopolymer, foaming agents, and surfactants can be cured at room temperature (within 5 days) without a separate heat treatment process. The homogeneous micropores were obtained through the stabilization of the interface between geopolymer slurry and oxygen gas bubbles generated through the base-catalyzed decomposition of hydrogen peroxide. The porosity was confirmed to be 29% and 54% before and after using sodium dodecyl sulfate (SDS). The compressive strengths and densities were 1.57 MPa and 0.75 g/cm3 for GP foam without SDS, and 3.63 MPa and 0.48 g/cm3 for GP foam with SDS. Through the mercury intrusion porosimetry analysis, the pores were further refined from 100 µm to 30 µm when SDS was used, and at the same time, the variation of pore size was minimized, so that a relatively uniform pore size was maintained. In addition, the thermal conductivity is 0.0803 W/m·K and the pore size is 33.2 μm, which is smaller in pore diameter than the geopolymer containing only hydrogen peroxide. As a result, although the hydrogen peroxide alone sample has excellent thermal conductivity, the use of a surfactant is recommended for fine micropore size control. While reducing the non-uniform distribution of pores and the size of micropores generated through the direct foaming method as an inorganic binder, the possibility of an insulation finish was also confirmed by reducing the weight.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3