Petrogenesis and Tectonic Implications of the Neoproterozoic Peraluminous Granitic Rocks from the Tianshui Area, Western Margin of the North Qinling Terrane, China: Evidence from Whole-Rock Geochemistry and Zircon U–Pb–Hf–O Isotopes

Author:

Yang Gang,Zhang Juan,Zhang Hongfu,Bao Zhian,Lin Abing

Abstract

The source and petrogenesis of peraluminous granitic rocks in orogenic belts can provide insights into the evolution, architecture, and composition of continental crust. Neoproterozoic peraluminous granitic rocks are sporadically exposed in the Tianshui area of the western margin of the North Qinling Terrane (NQT), China. However, the source, petrogenesis, and tectonic setting of these rocks still remain unclear, which limits our understanding of the Precambrian tectonic and crustal evolution of the Qinling Orogenic Belt (QOB). Here, we determined the whole-rock geochemical compositions and in situ zircon U–Pb ages, trace-element contents, and Hf–O isotopic compositions of a series of peraluminous granitic mylonites and granitic gneisses in the Tianshui area at the west end of North Qinling. Zircon U–Pb dating revealed that the protoliths of the studied granitic mylonites and granitic gneisses crystallized at 936–921 Ma. The granitic rocks displayed high A/CNK values (1.12–1.34) and were enriched in large-ion lithophile elements (e.g., Rb, Ba, Th, U, and K) and light rare earth elements, and they were depleted of high-field-strength elements (e.g., Nb, Ta, and Ti). These rocks showed variable zircon εHf(t) (−12.2 / 9.7) and δ18O (3.56‰ / 11.07‰) values, suggesting that they were derived from heterogeneous crustal sources comprising predominantly supracrustal sedimentary rocks and subordinate igneous rocks. In addition, the U–Pb–Hf isotopic compositions from the core domains of inherited zircons were similar to those of detrital zircons from the Qinling Group, suggesting that the Qinling Group was an important crustal source for the granitic rocks. The lithological and geochemical features of these granitic rocks indicate that they were generated by biotite dehydration melting of heterogeneous sources at lower crustal depths. Combining our results with those of previous studies, we suggest that the NQT underwent a tectonic transition from syn-collision to post-collision at 936–874 Ma in response to the assembly and breakup of the Rodinia supercontinent.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference139 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3