Bioadsorption of Terbium(III) by Spores of Bacillus subtilis

Author:

Dong WeiORCID,Wang Huimin,Ning Zhoushen,Hu Kaijian,Luo Xianping

Abstract

Wastewater containing low concentrations of rare earth ions not only constitutes a waste of rare earth resources but also threatens the surrounding environment. It is therefore necessary to develop environmentally friendly methods of recovering rare earth ions. The spores produced by Bacillus are resistant to extreme environments and are effective in the bioadsorption of rare earth ions, but their adsorption behaviors and mechanisms are not well understood. In this study, the cells and spores of Bacillus subtilis PS533 and PS4150 were used as biosorbents, and their adsorption of terbium ions was compared under different conditions. The adsorption characteristics of the spores were investigated, as were the possible mechanisms of interaction between the spores and rare earth ions. The results showed that the PS4150 spores had the best adsorption effect on Tb(III), with the removal percentage reaching 95.2%. Based on a computational simulation, SEM observation, XRD, XPS, and FTIR analyses, it was suggested that the adsorption of Tb(III) by the spores conforms to the pseudo−second−order kinetics and the Langmuir adsorption isotherm model. This indicates that the adsorption process mainly consists of chemical adsorption, and that groups such as amino, hydroxyl, methyl, and phosphate, which are found on the surface of the spores, are involved in the bioadsorption process. All of these findings suggest that Bacillus subtilis spores can be used as a potential biosorbent for the recovery of rare earth ions from wastewater.

Funder

National Natural Science Foundation of China

the Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3