Natural Radioactivity and Radiological Hazard Effects from Granite Rocks in the Gabal Qash Amir Area, South Eastern Desert, Egypt

Author:

Emad Bahaa M.,Sayyed M. I.ORCID,Somaily Hamoud H.,Hanfi Mohamed Y.ORCID

Abstract

The existence of radioactivity linked to the heavy-bearing minerals in building materials—such as granite—has increased attention to the extraction procedure. Granite rocks play an essential economic role in various areas of Egypt. Thus, this study intended to detect the 238U, 232Th, and 40K activity concentrations in the examined granite samples and to determine the corresponding radiological risks associated with the granite. The studied rocks were collected in the Gabal Qash Amir area (south Eastern Desert, Egypt). The obtained results of the activity concentrations for 238U (193 ± 268) Bq/kg, 232Th (63 ± 29) Bq/kg, and 40K (1034 ± 382) Bq/kg indicated that there were moderate concentrations in the investigated samples, which were greater than the worldwide average. The radioactivity levels in the studied granite samples are due to the secondary alteration of radioactive-bearing minerals associated with cracks of granites (secondary minerals in muscovite granites are wolframite, uraninite, uranophane, beta-uranophane, autunite, xenotime, columbite, zircon, and monazite). The radiological risk assessment for the public from the radionuclides that were associated with the studied granite samples was predicted via estimating the radiological hazard factors, such as the radium equivalent content (362 Bq kg−1), compared with the recommended limit. The dosing rate Dair in the air (169.2 nGy/h), the annual effective dose both outdoors (AEDout ~ 0.21 ± 0.17 mSv) and indoors (AEDin ~ 0.83 ± 0.67 mSv), the annual gonadal dose equivalent (AGDE ~ 1.18 ± 0.92 mSv), as well as the external (Hex) and internal (Hin) hazard indices (>1), and another factor were associated with excess lifetime cancer risk. According to the statistical investigation, the studied granites were inappropriate for use in construction and infrastructure fields. They may induce health problems due to the radioactivity levels, which exceed the recommended limits.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3