A Novel Prognostic Prediction Model Based on Pyroptosis-Related Clusters for Breast Cancer

Author:

Tian Baoxing,Yin Kai,Qiu Xia,Sun Haidong,Zhao Ji,Du Yibao,Gu Yifan,Wang XingyunORCID,Wang Jie

Abstract

Breast cancer (BC) is the most common cancer affecting women and the leading cause of cancer-related deaths worldwide. Compelling evidence indicates that pyroptosis is inextricably involved in the development of cancer and may activate tumor-specific immunity and/or enhance the effectiveness of existing therapies. We constructed a novel prognostic prediction model for BC, based on pyroptosis-related clusters, according to RNA-seq and clinical data downloaded from TCGA. The proportions of tumor-infiltrating immune cells differed significantly in the two pyroptosis clusters, which were determined according to 38 pyroptosis-related genes, and the immune-related pathways were activated according to GO and KEGG enrichment analysis. A 56-gene signature, constructed using univariate and multivariate Cox regression, was significantly associated with progression-free interval (PFI), disease-specific survival (DSS), and overall survival (OS) of patients with BC. Cox analysis revealed that the signature was significantly associated with the PFI and DSS of patients with BC. The signature could efficiently distinguish high- and low-risk patients and exhibited high sensitivity and specificity when predicting the prognosis of patients using KM and ROC analysis. Combined with clinical risk, patients in both the gene and clinical low-risk subgroup who received adjuvant chemotherapy had a significantly lower incidence of the clinical event than those who did not. This study presents a novel 56-gene prognostic signature significantly associated with PFI, DSS, and OS in patients with BC, which, combined with the TNM stage, might be a potential therapeutic strategy for individualized clinical decision-making.

Funder

Science and Technology Commission of Shanghai Municipality

Shanghai Changning District Municipal Health Commission

Beijing Science and Technology Innovation Medical Development Foundation

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3