Non-Contact and Self-Calibrated Photopyroelectric Method for Complete Thermal Characterization of Porous Materials

Author:

Swapna Mohanachandran Nair Sindhu1ORCID,Tripon Carmen2ORCID,Gutt Robert2,Farcas Alexandra2,Bojan Marcel2,Korte Dorota1ORCID,Kacso Irina2,Franko Mladen1,Dadarlat Dorin2

Affiliation:

1. Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia

2. National R&D Institute for Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania

Abstract

A general theory of a photopyroelectric (PPE) configuration, based on an opaque sample and transparent pyroelectric sensor, backing and coupling fluids is developed. A combined back-front detection investigation, based on a frequency scan of the phase of the PPE signals, followed by a self-normalization of the phases’ behavior, leads to the possibility of simultaneously measuring both thermal effusivity and diffusivity of a solid sample. A particular case of this configuration, with no coupling fluid at the sample/backing interface and air instead of coupling fluid at the sample/sensor interface (non-contact method) is suitable for simultaneous measurement ofboth thermal diffusivity and effusivity (in fact complete thermal characterization) of porous solids. Compared with the already proposed configurations for investigations of porous materials, this novel configuration makes use of a fitting procedure with only one fitting parameter, in order to guarantee the uniqueness of the solution. The porous solids belong to a class of materials which are by far not easy to be investigated using PPE. To the best of our knowledge, porous materials represent the only type of compounds, belonging to condensed matter, which were not taken into consideration (until recently) as potential samples for PPE calorimetric investigations. Consequently, the method proposed in this paper complete the area of applications of the PPE method. Applications on some porous building materials and cellulose-based samples validate the theory.

Funder

Romanian Ministry of Research, Innovation and Digitalisation

Slovanian Research Agency

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3