Recent Advances in the Synthesis and Application of Vacancy-Ordered Halide Double Perovskite Materials for Solar Cells: A Promising Alternative to Lead-Based Perovskites

Author:

Murugan Santhosh1,Lee Eun-Cheol12ORCID

Affiliation:

1. Department of Nanoscience and Technology, Graduate School, Gachon University, Seongnam-si 13120, Republic of Korea

2. Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea

Abstract

Lead-based halide perovskite materials are being developed as efficient light-absorbing materials for use in perovskite solar cells (PSCs). PSCs have shown remarkable progress in power conversion efficiency, increasing from 3.80% to more than 25% within a decade, showcasing their potential as a promising renewable energy technology. Although PSCs have many benefits, including a high light absorption coefficient, the ability to tune band gap, and a long charge diffusion length, the poor stability and the toxicity of lead represent a significant disadvantage for commercialization. To address this issue, research has focused on developing stable and nontoxic halide perovskites for use in solar cells. A potential substitute is halide double perovskites (HDPs), particularly vacancy-ordered HDPs, as they offer greater promise because they can be processed using a solution-based method. This review provides a structural analysis of HDPs, the various synthesis methods for vacancy-ordered HDPs, and their impact on material properties. Recent advances in vacancy-ordered HDPs are also discussed, including their role in active and transport layers of solar cells. Furthermore, valuable insights for developing high-performance vacancy-ordered HDP solar cells are reported from the detailed information presented in recent simulation studies. Finally, the potential of vacancy-ordered HDPs as a substitute for lead-based perovskites is outlined. Overall, the ability to tune optical and electronic properties and the high stability and nontoxicity of HDPs have positioned them as a promising candidate for use in photovoltaic applications.

Funder

Korean government

Gachon University Research Fund of 2022

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3