Gypsum-Based Humidity-Control Material: Preparation, Performance and Its Impact on Building Energy Consumption

Author:

Li Xi12ORCID,Ran Maoyu12

Affiliation:

1. School of Architecture, Huaqiao University, Xiamen 361021, China

2. Xiamen Key Laboratory of Ecological Building Construction, Xiamen 361021, China

Abstract

This paper introduces a new type of gypsum-based humidity-control material. The material combines gypsum–silica gel humidity-control material with 20% sepiolite powder activated by calcium chloride. Both experimental and simulation studies were conducted to assess its humidity-control performance. The experimental results indicate that gypsum-based humidity-control material has the property of absorbing moisture in high-humidity environments and releasing moisture in low-humidity environments. Moreover, both environmental temperature and relative humidity (RH) have an impact on the material’s humidity-control performance. At a relative humidity of 97.4%, the maximum equilibrium moisture content of the material is 0.225 g/g, which is 1.4 times that of the gypsum–silica gel humidity-control material and 4.5 times that of pure gypsum material. The simulation results indicate that gypsum-based humidity-control material effectively mitigates indoor relative humidity fluctuations and maintains indoor air relative humidity within a narrow range. Furthermore, the material has the potential to reduce building energy consumption. This is especially evident under climate conditions with large temperature and relative humidity differences between day and night, such as in Beijing, Paris, and Atlanta. The maximum potential energy-saving rate in Beijing can reach up to 19.31%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3