The Thermal Stress Problem of Bimodular Curved Beams under the Action of End-Side Concentrated Shear Force

Author:

He Xiao-Ting12ORCID,Wang Xin1,Zhang Meng-Qiao1,Sun Jun-Yi12ORCID

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China

Abstract

A bimodular material is a kind of material that presents two elastic moduli in tension and compression. In classical thermoelasticity, however, the bimodular material is rarely considered due to its complexity in analysis. In fact, almost all materials will present, more or less, bimodular characteristics, and in some cases, the mechanical properties of materials cannot be fully utilized simply by ignoring the bimodular characteristics. In this study, the thermal stress problem of bimodular curved beams under the action of end-side concentrated shear force is analytically and numerically investigated, in which the temperature rise modes in a thermal environment are considered arbitrary. Using the stress function method based on compatibility conditions, a two-dimensional solution of thermoelasticity of the bimodular curved beam subjected to end-side concentrated shear force was obtained. The results show that the solution for a bimodular curved beam with a thermal effect can be reduced to that of a bimodular curved beam without a thermal effect. At the same time, the numerical simulation for the problem verifies the correctness of the theoretical solution. The results may serve as a theoretical reference for the refined analysis and optimization of curved beams in a thermal environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference33 articles.

1. Apparent flexural modulus and strength of multimodulus materials;Jones;J. Compos. Mater.,1976

2. Models for fibrous composites with different properties in tension and compression;Bert;ASME J. Eng. Mater. Technol.,1977

3. Wu, R.F., and Zhang, Y.Z. (1986). Elasticity Theory of Different Moduli, China Railway Publishing House.

4. Nacre: An orthotropic and bimodular elastic material;Bertoldi;Compos. Sci. Technol.,2008

5. Are tensile and compressive Young’s moduli of compact bone different;Barak;J. Mech. Behav. Biomed. Mater.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3