A Study on Long-Term Oxidation and Thermal Shock Performance of Nanostructured YSZ/NiCrAlY TBC with a Less Dense Bond Coat

Author:

Badea Teodor-Adrian12ORCID,Condruz Mihaela-Raluca1ORCID,Paraschiv Alexandru1ORCID

Affiliation:

1. Romanian Research and Development Institute for Gas Turbines COMOTI, 220D Iuliu Maniu Av., 061126 Bucharest, Romania

2. Materials Science and Engineering Faculty, University Politehnica of Bucharest, 060042 Bucharest, Romania

Abstract

This paper focused on studying the performance of a nanostructured thermal barrier coating (TBC) system deposited by APS, which had a bond coat with inter-lamellar porosities that resulted during the manufacturing process. The higher porosity level of the bond coat was studied as a possible way to keep the thickness of the TGO under control, as it is distributed on a higher surface, thereby reducing the chance of top-coat (TC) spallation during long-term oxidation and high-temperature thermal shock. The TBC system consisted of nanostructured yttria partially stabilized zirconia (YSZ) as a top coat and a conventional NiCrAlY bond coat. Inter-lamellar porosities ensured the development of a TGO distributed on a higher surface without affecting the overall coating performance. Based on long-term isothermal oxidation tests performed at 1150 °C, the inter-lamellar pores do not affect the high resistance of nanostructured TBCs in case of long-term iso-thermal oxidation at 1150 °C. The ceramic layer withstands the high-temperature exposure for 800 h of maintaining without showing major exfoliation. Fine cracks were discovered in the ceramic coating after 400 h of isothermal oxidation, and larger cracks were found after 800 h of exposure. An increase in both ceramic and bond-coat compaction was observed after prolonged high-temperature exposure, and this was sustained by the higher adhesion strength. Moreover, in extreme conditions, under high-temperature thermal shock cycles, the TBC withstands for 1242 cycles at 1200 °C and 555 cycles at 1250 °C.

Funder

Ministerul Cercetării și Inovării

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3