Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta

Author:

Chunn David,Faramarzi Monireh,Smerdon Brian,Alessi Daniel

Abstract

It has become imperative that surface and groundwater resources be managed as a holistic system. This study applies a coupled groundwater–surface water (GW–SW) model, SWAT–MODFLOW, to study the hydrogeological conditions and the potential impacts of climate change and groundwater withdrawals on GW–SW interactions at a regional scale in western Canada. Model components were calibrated and validated using monthly river flow and hydraulic head data for the 1986–2007 period. Downscaled climate projections from five General Circulation Models (GCMs), under the RCP 8.5, for the 2010–2034 period, were incorporated into the calibrated model. The results demonstrated that GW–SW exchange in the upstream areas had the most pronounced fluctuation between the wet and dry months under historical conditions. While climate change was revealed to have a negligible impact in the GW–SW exchange pattern for the 2010–2034 period, the addition of pumping 21 wells at a rate of 4680 m3/d per well to support hypothetical high-volume water use by the energy sector significantly impacted the exchange pattern. The results showed that the total average discharge into the rivers was only slightly reduced from 1294 m3/d to 1174 m3/d; however, localized flowrate differences varied from under 5 m3/d to over 3000 m3/d in 320 of the 405 river cells. The combined potential impact is that intensive groundwater use may have more immediate effects on river flow than those of climate change, which has important implications for water resources management and for energy supply in the future.

Funder

Natural Sciences and Engineering Research Council of Canada

Alberta Innovates

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3