Abstract
The process of designing a longwall powered support is extremely complex and requires many operations related to the creation of a complete machine. The powered support section is one of the basic elements of the longwall system. It acts as protection for the working space and takes part in the process of excavating and transporting the spoil. The implementation of the support that meets the guidelines of the manufacturer and user requires an endurance analysis at the design stage conducted according to the regulations in force. The main objective of this research, pursued by the authors, was to perform the analysis of the ultimate strength of selected elements of the designed powered support section. The research was carried out with the use of special software that uses the finite element method. This article presents the analysis of the strength limits conducted with the help of the finite element method, determining the strength of selected elements of the longwall support section. The solutions proposed by the authors include changes in the structure and properties of the material in the design process. The aim of the proposed solution was to obtain a model with strength value that meets safety standards. The research results are a valuable source of knowledge for designers. Solutions of this type set examples for spatial models of the longwall support section being designed currently. The analysis presented in the article, together with the results of the research and the conclusions resulting from them, may improve the safety and effectiveness of powered supports.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献