Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China

Author:

Zhu Jiayin,Liu Yingfang,Li RuixinORCID,Chen Bin,Chen Yu,Lu Jifu

Abstract

The intermittent heating mode of Kang plays an important role in the heat storage and release in cave dwellings. However, research on the effect of Kang heating on the thermal process of traditional buildings is rare. Therefore, based on long-term monitoring of cave dwellings, regular conclusions about the influence of Kang heating on the thermal environment were obtained. Furthermore, an unsteady heat transfer model of the envelope was proposed for the first time. Then, based on this model, the thermal storage performance of cave dwellings during the period of Kang intermittent heating was explored. The results showed that, due to Kang heating, the indoor air temperature of cave dwellings could be increased by an average of 3.1 °C. Furthermore, the inner walls had a large thermal mass and the maximum heat storage in a single day was 487.75 kJ/m2, while the maximum heat release was 419.02 kJ/m2. The heat release at night could reach 87%. In this paper, the law of thermal storage and release characteristics of earthen building envelopes under intermittent heating was firstly obtained. Results can enrich the thermal process theory of earthen buildings and provide a theoretical basis and technical support for building thermal environmental construction.

Funder

Science and Technology Department of Henan Province

National Natural Science Foundation of China

Young talents Enterprise Cooperative Innovation Team Project of Zhengzhou University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3