Dynamic Self-Learning Artificial Bee Colony Optimization Algorithm for Flexible Job-Shop Scheduling Problem with Job Insertion

Author:

Long XiaojunORCID,Zhang JingtaoORCID,Zhou KaiORCID,Jin Tianguo

Abstract

To solve the problem of inserting new job into flexible job-shops, this paper proposes a dynamic self-learning artificial bee colony (DSLABC) optimization algorithm to solve dynamic flexible job-shop scheduling problem (DFJSP). Through the reasonable arrangement of the processing sequence of the jobs and the corresponding relationship between the operations and the machines, the makespan can be shortened, the economic benefit of the job-shop and the utilization rate of the processing machine can be improved. Firstly, the Q-learning algorithm and the traditional artificial bee colony (ABC) algorithm are combined to form the self-learning artificial bee colony (SLABC) algorithm. Using the learning characteristics of the Q-learning algorithm, the update dimension of each iteration of the ABC algorithm can be dynamically adjusted, which improves the convergence accuracy of the ABC algorithm. Secondly, the specific method of dynamic scheduling is determined, and the DSLABC algorithm is proposed. When a new job is inserted, the new job and the operations that have not started processing will be rescheduled. Finally, through solving the Brandimarte instances, it is proved that the convergence accuracy of the SLABC algorithm is higher than that of other optimization algorithms, and the effectiveness of the DSLABC algorithm is demonstrated by solving a specific example with a new job inserted.

Funder

China Postdoctoral Science Foundation

National Defense Basic Scientific Research Program of China

Agriculture Research System of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Scheduling for Large-Scale Flexible Job Shop Based on Noisy DDQN;International Journal of Network Dynamics and Intelligence;2023-12-21

2. Integrated Optimization of Blocking Flowshop Scheduling and Preventive Maintenance Using a Q-Learning-Based Aquila Optimizer;Symmetry;2023-08-18

3. An improved discrete particle swarm optimization for multi-objective flexible job shop scheduling problem under dynamic perturbation;International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023);2023-08-10

4. Energy efficient optimization algorithms for MANET;Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing;2023-08-03

5. Cargo Terminal Intelligent-Scheduling Strategies Based on Improved Bee Colony Algorithms;Applied Sciences;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3