Abstract
To solve the problem of inserting new job into flexible job-shops, this paper proposes a dynamic self-learning artificial bee colony (DSLABC) optimization algorithm to solve dynamic flexible job-shop scheduling problem (DFJSP). Through the reasonable arrangement of the processing sequence of the jobs and the corresponding relationship between the operations and the machines, the makespan can be shortened, the economic benefit of the job-shop and the utilization rate of the processing machine can be improved. Firstly, the Q-learning algorithm and the traditional artificial bee colony (ABC) algorithm are combined to form the self-learning artificial bee colony (SLABC) algorithm. Using the learning characteristics of the Q-learning algorithm, the update dimension of each iteration of the ABC algorithm can be dynamically adjusted, which improves the convergence accuracy of the ABC algorithm. Secondly, the specific method of dynamic scheduling is determined, and the DSLABC algorithm is proposed. When a new job is inserted, the new job and the operations that have not started processing will be rescheduled. Finally, through solving the Brandimarte instances, it is proved that the convergence accuracy of the SLABC algorithm is higher than that of other optimization algorithms, and the effectiveness of the DSLABC algorithm is demonstrated by solving a specific example with a new job inserted.
Funder
China Postdoctoral Science Foundation
National Defense Basic Scientific Research Program of China
Agriculture Research System of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献