CFD Modelling of the Fuel Reactor of a Chemical Loping Combustion Plant to Be Used with Biomethane

Author:

Bartocci PietroORCID,Abad Alberto,Cabello Arturo,de las Obras Loscertales Margarita,Lu Wang,Yang Haiping,Fantozzi Francesco

Abstract

To realize a carbon negative power production technology, it is interesting the option of coupling a Chemical Loping Combustor to a gas turbine. The development of this technology foreseen in the project GTCLC-NEG has some technical barriers, the most important of which is the operation of the chemical looping combustor at high temperature and high pressure conditions. To overcome these limits CFD modeling can be performed to optimize the behavior of the combustor and its design process. This work models the FUEL reactor of a chemical looping combustion plant working in batch mode and based on the reactor available at the Instituto de Carboquimica in Zaragoza, Spain. It is used an oxygen carrier mainly based on 60% mass Fe2O3 and 40% mass Al2O3. Biomethane is fed to the bottom of the fluidized bed with different velocities and mass flows and the composition of the gases at the outlet of the fuel reactor is measured. The results show that it is possible to model a 2 min duration reduction cycle by running the model for a time comprised between a minimum of 4 h and a maximum of 2 days of simulation. Another important result is the modeling of the chemical reactions happening in the reactor. Kinetics is modelled based on Activation energy (66 kJ/mol) and Pre-exponential factor (4.34 × 101 m3n mol−n s−1). The simple kinetic scheme gives reasonable first approximations and can be used to determine the duration of the reaction, the composition of the exhaust gases and the biofuel conversion.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3