Abstract
Electro-fermentation is a novel process that consists in coupling a microbial fermentative metabolism with an electrochemical system. In such a process, the electrodes act either as the electron sinks or sources modifying the fermentation balance of a microbial fermentative metabolism and provide new options for the control of microbial activity. A theoretical framework for the analysis and control of fermentations using electro-fermentation is currently lacking. In this paper, we propose a simple electro-fermentation model in which a population of fermentative bacteria switch between two metabolic behaviors in response to different electrode potentials. We then mathematically analyze optimal strategies to maximize the production of one of the rising products in a batch fermentation using Pontryagin’s Maximum Principle. The obtained results show that, in some experimental configurations, a dynamic control of the electrode potential is required for the maximization of the desired product. Consequences of the obtained optimal strategy for driving electro-fermentation experiments are discussed through a realistic example. This analysis also highlights that the transition rates between fermentation and electro-fermentation behaviors are currently unknown and would be crucial to quantify in order to apply such a control approach.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献