Abstract
In industrial environments, having instrumentation able to attain fast, accurate, and autonomous measurements is pivotal to understanding the dynamics of liquid and particles during transport. Ideally, these instruments, consisting of either probes or sensors, should be robust, fast, and unintrusive, i.e., not cause interference on the very flows being monitored, and require minimal maintenance. Beyond monitoring, the process knowledge gained through real time inspection allows teams to make informed technical decisions based on particle behavior, i.e., settling of particles causing pipe wear and clustering or blockages that can damage the unit or cause shutdowns, both of which with economical drawbacks. The purpose of this review is to examine experimental measurement techniques used to characterize physical properties and operational parameters of solid-liquid slurry flows, focusing on non-ionizing radiation methods. With this text the intent is not to provide an exhaustive examination of each individual technique but rather an overview on the most pertinent types of instrumentation, which will be presented, in addition to application examples from the literature, while directing the reader for pertinent seminal and review papers for a more in-depth analysis.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference184 articles.
1. Slurry Systems Handbook;Abulnaga,2002
2. On two-phase sediment transport: Dilute flow
3. Emulsions, Foams, and Suspensions: Fundamentals and Applications;Schramm,2006
4. Solid-Liquid Two Phase Flow;Peker,2011
5. Multiphase Flow Measurement Techniques for Slurry Transport
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献