Optimization Design and Performance Evaluation of a Hybrid Excitation Claw Pole Machine

Author:

Cao YuORCID,Zhu Shushu,Yu Junyue,Liu Chuang

Abstract

Claw pole machines (CPMs) have the advantages of a simple structure and low cost; therefore, they are commonly used in electric vehicles (EV). However, the methods to improve reliability and efficiency should be studied. So, a new type of hybrid excitation claw pole machine (HE-CPM) for EV is proposed. The permanent magnet (PM) is inserted in the rotor, and the field winding is placed on the front and back ending cover. Because the hybrid flux path of the proposed machine is three-dimensional (3D) and 3D finite element analysis (FEA) is time-consuming, a 3D magnet equivalent circuit (MEC) method considering rotor position is proposed and results between 3D MEC and FEA are compared. Particle swarm optimization (PSO) and 3D MEC are combined in the optimization design of HE-CPM. The optimized results prove the effectiveness of the optimization method. Finally, the flux density distribution, electromagnetic characteristics of HE-CPM are evaluated. The thermal analysis and mechanical stress analysis are carried out. The HE-CPM prototype was manufactured. The direct current (DC) bus voltages under different excitation currents and load currents are measured and compared with those of FEA. When the armature current and the excitation current are 7 A and 4 A, respectively, the rated power and rated speed of HE-CPM are 10.28 kW and 3000 rpm, respectively. The maximum efficiency is 89%. FEA results are basically consistent with the experimental results. Accurate results and time savings can be achieved by combining PSO and 3D MEC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3